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Introduction

Considering uncertainties in Sea-Level Rise (SLR) assessments
is important for managers & planners

Using statistical procedures, uncertainty is error in our
measurement of the underlying data:

— SLR estimates

— LiDAR elevations
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— Water table elevations
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Introduction

Errors limited to Normal
distribution

USGS (Gesch, 2009; 2013)

— Maps uncertainty zone
centered on inundation
boundary

NOAA (Schmid et al., 2013)

— Modifies z-score to generate
probability surface

Errors NOT limited to Normal
distribution

e Purvis et al. (2008)

— Monte Carlo to propagate
probability distributions
through inundation model

e Cooper & Chen (2013)

— Extends NOAA to Monte Carlo
to include variables with
different probabilities
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Objectives

1. Determine which geospatial techniques produce Water Table
Elevation Model (WTEM) with best vertical accuracy

2. In calculating vulnerable land area, evaluate effect when
including uncertainty in:

— SLR estimates — SLR estimates

— LiDAR elevations VS — LiDAR elevations

— Vertical datums — Vertical datums

— Datum transformations —  Datum transformations

— and Water Table Elevation
Model (WTEM)



1995 -2005

Average Monthly Rainfall (cm)

Study area

Biscayne aquifer underlies
study area

Best indicator of peak
groundwater levels at end of
wet season is September:
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2007 FDEM LiDAR
— 3 m DEM
— Vertical accuracy 6.5cm

Water table elevations (WTE)

— 65 daily p time-series averaged
September 1995-2005

— Transformed NGVD29 to NAVDS88
(NGVD29 p 47cm < NAVDSS)

Physiographic regions delineate
hydrologic boundaries
— GIS layers defined by White (1970)
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Methods: WTEM

Geospatial approaches tested for
each physiographic region

Multiple Linear Regression (MLR)

Geographic Weighted Regression
(GWR)

Global Polynomial Interpolation
(GPI)

Inverse Distance Weighted (IDW)
Ordinary Kriging (OK)
Empirical Bayesian Kriging (EBK)

Note: all parameters were chosen by trail and
error for best results

Vertical accuracy assessment
identifying best approach

30 WTEs set aside for accuracy
assessment used to calculate:

RMSE = \/2<Zdam,i—zcheck,i>2/n



Methods: Errors
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SLR estimates IPCC AR5 RCP 8.5 SLR estimates: 74 cm
median & likely range 52 to 98 cm by year 2100 formalized
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as triangular distribution

Sea-level rise (SLR)

LiDAR RMSE 6.5 cm corresponds to 1 o & data Normally
distributed since provider used NSSDA (FGDC, 1995) e

WTEM Table 1 Error statistics for predicted vs. independent water levels used in accuracy assessment

A water level observations and predicted

Physiographic region RMSE (cm) p(cm) Median (cm) Skew o (cm) n Min (cm) Max (cm)

Consolidated 13 1 -1 0.59 13 30 26 36
Atlantic Coastal Ridge 16 = 3 0.7 | 17 17 -39 20
Southern Slope 6 —3 —4 042 6 153 -1 8
Where A = difference, RMSE = Root Mean Square Emror, n = number of p& standard deviation, and p =
mean

Skewed to left (exceeds skew+ 0.5)
Normally distributed (does not exceed skew+ 0.5)



Methods: Errors

Vertical datums and transformations

[opography of
Sea Surface
(TSS)
transformation

National Geodetic
Vertical Datum of
1929 (NGVD 29)
o=18 cm

North American
Vertical Datum of
1988 (NAVD 88)

oc=3cm

g=3cm

Mean Higher High
Water (MHHW)

ag= 1.8 cm

ldal transformation
o=3.3cm

Fig. 2 VDatum vertical errors calculated as standard deviation values for South Florida modified
from NOAA (2013). Arrows denote transformation processes, and ovals denote source data.

Cumulative Vertical Uncertainty (CVU) standard deviation: (VU = ‘/02 +02 L g2
1 4% T O



Methods: Inundation modeling

Monte Carlo simulation

I nun datlon mOd e I S. Probability dstribution function (pdf)

Sea-level Rise Estimates

Excluding WTEM: /\
pdf LiDAR, datums &

P"CJ" = X(SLR, > LiDARCVUﬂ + LiDARyy) pdf Water Table their transformations

Including WTEM Southern Slope /(\

(errors normal): \ Y /

P., = X(WTEM¢yy, + WTEMx,y + SLR, > LiDARcyy + LiDARx,y)
[ Sea-level rise models j

Including WTEM Atlantic Coastal Ridge
(errors skewed): 1
Probability of inundation based

P, = LZ(WTEM,+ WTEM¢yy, + WTEMx,y + SLR. > LiDARyy_+ LiDARx, y) Nrminty of underlying
data

95%




Results: WTEM accuracy

Table 3 The Root Mean Square Errors (RMSES) of six tested approaches for generating Water
Table Elevation Model (WTEM) in two physiographic regions. Two identified approaches are in

bold.

Approach

Atlantic Coastal Ridge

Southern Slope

RMSE (cm) R2

RMSE (cm) R2

Global Polynomial Interpolation (GPI)

Empirical Bayesian Kriging (EBK)
Ordinary Kriging (OK)
Inverse Distance Weighting (IDW)

Geographic Weighted Regression (GWR)

Multiple Linear Regression (MLR)

16

18
18
19
18 0.93
20 0.90

10

8 0.72
11 0.66




Results: Effect of WTEM on land area

Table 4 Vulnerable area to sea-level rise (SLR) when we do and do not consider uncertainty.
Where WTEM = Water Table Elevation Model, and £ = sum.

Uncertainty: Uncertainty:
No uncertainty:  No uncertainty: LiDAR SLR LiDAR, SLR
LiDAR, SLR LiDAR, SLR . estimates, datums
. . estimates, .
estimates estimates, datums & their & their
WTEM transformations transformations,
WTEM
High confidence (P>95%)
Physiographic Area % Area % Area % Area % Area %
region (km?) study (km?) study (km?) study (km?) study (km?) study
area area area area area
Atlantic 61.12 37.70 7.04 4.34 12.73 7.85 5.18 3.19 4.77 2.94
Coastal
Ridgenavpss
Atlantic 8.88 5.48 4.52 2.79 4.75 2.93 3.65 2.25 0.97 0.60
Coastal
Ridgemunw
Southern 35.18 21.70 19.75 12.18 24.89 15.35 16.24 10.02 11.36 7.01
Slopenavpss
Southern 56.96 35.13 5194 32.03 53.13 32.77 48.27 29.77 45.39 27.99
SlopeMHHw
X 162.14 100.00 83.25 51.34 95.50 58.90 73.34 45.23 62.49 38.54

Excluding uncertainty in WTEM at 95% threshold consistently
overestimates land area regardless region, vertical reference, &
probability density function



Results: Sea-level rise map

Bicayne
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//’;—-—‘— Physiographic boundary Marine and groundwater inundation by 2100
> 95% probability

Fig. 3 SLR vulnerability map including uncertainty in SLR estimates, LIDAR, vertical datums, transformations,
and groundwater modeling highlighting lands vulnerable under SLR of 74 cm with range between 52 and 98 by
year 2100 for the two most southern cities in mainland Florida



Conclusions

It is important to test different approaches for each
physiographic region in order to reduce uncertainty in WTEM.

Excluding uncertainty in WTEM at >95% threshold
overestimates total land area for South FL

Including WTEM uncertainty adds to the integrity of the SLR
mapping tools & should be considered so that more effective
adaptation decisions can be made.
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